
Bringing Rust to Safety-Critical Systems in Space
Lukas Seidel∗

Binarly, TU Berlin
lukas@binarly.io

Julian Beier∗
TU Berlin

j.beier@campus.tu-berlin.de

∗Both authors contributed equally to this work

Abstract—The development of safety-critical aerospace systems
is traditionally dominated by the C language. Its language char-
acteristics make it trivial to accidentally introduce memory safety
issues resulting in undefined behavior or security vulnerabilities.
The Rust language aims to drastically reduce the chance of
introducing bugs and consequently produces overall more secure
and safer code. However, due to its relatively short lifespan,
industry adaption in safety-critical environments is still lacking.
This work provides a set of recommendations for the development
of safety-critical space systems in Rust. Our recommendations
are based on insights from our multi-fold contributions to-
wards safer and more secure aerospace systems: We provide
a comprehensive overview of ongoing efforts to adapt Rust for
safety-critical system programming, highlighting its potential to
enhance system robustness. Next, we introduce a procedure for
partially rewriting C-based systems in Rust, offering a pragmatic
pathway to improving safety without necessitating a full system
overhaul. During the execution of our rewriting case study, we
identify and fix three previously undiscovered vulnerabilities in
a popular open-source satellite communication protocol. Finally,
we introduce a new Rust compiler target configuration for
bare metal PowerPC. With this, we aim to broaden Rust’s
applicability in space-oriented projects, as the architecture is
commonly encountered in the domain, e.g., in the James Webb
Space Telescope.

I. INTRODUCTION

Space exploration and utilization are undergoing a transfor-
mation, characterized by an increasing diversity of spacecraft,
ranging from large, sophisticated systems such as space tele-
scopes to smaller, more accessible and flexible platforms such
as CubeSats. These compact satellites, particularly prevalent
in Low Earth Orbit (LEO), exemplify the trend towards
miniaturization and democratization in space technology. Sig-
nificantly higher affordability and accessibility as well as
short development life cycles led to their number doubling
between 2019 and 2022 [50]. A lot of spacecraft rely on
software predominantly written in C, a language known for
its performance and mature ecosystem but not for its safety
features. This reliance raises critical concerns, especially as
these systems play increasingly vital roles in scientific re-
search, communication, and Earth observation.

While C’s dominance in aerospace systems is rooted in
its historical presence in embedded systems, its inherent lack
of memory safety and the manual management of resources

has led to a plethora of vulnerabilities and safety issues.
Such issues can directly impact the reliability and security
of space missions. Although long called for, the security of
space systems was neglected for a long time [14], resulting
in unsafe systems and even creating the opportunity for unau-
thorized takeover [51]. As the sector evolves, with a growing
emphasis on smaller, cost-effective satellites and more frequent
launches, the need for robust, secure, and reliable software
becomes increasingly important.

Rust, a modern programming language that prioritizes safety
and performance, provides a possible alternative. Rust’s design
inherently eradicates a whole class of common bugs found
in C programs, particularly those related to memory safety.
By leveraging Rust’s capabilities, it is possible to signifi-
cantly reduce the incidence of system failures and security
vulnerabilities, ensuring higher standards of reliability for
these critical systems. Introducing Rust to large-scale software
projects such as Android showed that less memory-unsafe
code correlates closely to fewer memory safety vulnerabilities,
dropping from 76% to 35% of Android’s total vulnerabilities
between 2019 and 2022 [48]. Although its language features
were theoretically evaluated for their applicability in safety-
critical environments in the past [3], Rust is yet to be widely
adopted by the industry. Practitioners often prefer standardized
languages while Rust did not have a language specification
for the longest time, making it harder to talk about problems
such as undefined behavior. Additionally, especially safety-
critical parts of industrial space-grade systems might require
qualified software toolchains. The shift to a memory-safe
language like Rust aligns with the increasing complexity and
diversity of embedded systems in space missions. At the same
time, replacing all legacy C code is not feasible. Instead,
more and more memory-safe language implementations should
gradually be used or notoriously error-prone code sites should
be partially replaced.

In this work, we make several contributions to improve
the safety and security of critical onboard systems in space
by leveraging Rust. First, we review current developments
toward enabling Rust in safety-critical contexts. We put our
focus on practical work and implementations, providing rec-
ommendations to practitioners on how they can utilize Rust
in an environment with high safety standards. We discuss the
state of the embedded Rust ecosystem, as we focus on system
programming, e.g., for satellite firmware, efforts toward Rust

IEEE Security for Space Systems (3S) 2024
27-28 May 2024, Noordwijk, Netherlands
https://atpi.eventsair.com/24a06—3s2024/

standardization and qualification as well as ways to integrate
Rust code in existing C projects. To this end, we conduct a case
study on how to replace existing C code on the function level
with new Rust implementations without changing the user
interface or introducing unnecessary dependencies. The result
of the introduced process is a library that can transparently
replace the original one. The end user, who is developing on
top of the original library, does not need to make any changes
to their code. Finally, we showcase a new target for the Rust
compiler, bare metal PowerPC. Bringing embedded Rust to
this target contributes to Rust’s applicability in space systems,
as PowerPC is still a common architecture in radiant-resistant
platforms.

In summary, we make the following contributions:
1) We evaluate the state of the Rust ecosystem for use in

safety-critical systems in space.
2) We present a process to partially replace components

of software developed in C with equivalent Rust imple-
mentations.

3) We identify and patch three security issues in the
Cubesat Space Protocol, a popular open-source packet
communication protocol for satellites.

4) We develop a new target configuration for the Rust
compiler, allowing the compilation of programs for bare
metal PowerPC CPUs.

5) Based on the combined insights of our contributions,
we develop a set of recommendations for practitioners
in the realms of space system development.

II. BACKGROUND

A. The Rust Programming Language

Rust was first introduced in 2006 by the Mozilla Foundation
with its version 1.0 release announced in 2015. The language
has since been adopted rapidly, with its strong focus on code
safety and high performance comparable to that of C or C++
as the main reasons for its success [35], [46].

Rust features a strong type system and enforces mem-
ory safety guarantees, adding to the language’s safety [29].
Guarantees include that there is only one mutable (writeable)
reference to an object or several readable ones, but not both at
the same time. This ownership system introduces zero runtime
overhead as it is enforced at compile time and effectively
eliminates a large class of correctness errors many C imple-
mentations are suffering from. Classic memory safety bugs
that are typically avoided with Rust include buffer overflows,
use-after-frees and null pointer dereferences [48].

Using the unsafe keyword, it is still possible to perform
potentially unsafe operations where necessary [29], [28]. Raw
pointer accesses are one example of an unsafe operation as
the borrow checker is not able to reason about these without a
type-safe view on the underlying memory. Especially in em-
bedded systems and low-level programming, such operations
often are not completely avoidable. Usage of unsafe blocks
can often be restricted to very few code sites, e.g., by wrapping
unsafe functionality in safe interfaces. Overall, Rust offers

full control where needed while still being considerably safer
than the alternatives, making it highly suitable for systems
programming [27]. Besides C and assembly, it is the only
language supported for Linux kernel development.

B. Security Issues in Space

Security and safety concerns in software engineering are
closely related [26]. Security issues such as memory cor-
ruptions can result in unwanted changes to internal state
representations and can have consequences such as hardware
damage or loss of control.

Both from an information security- but also a regulatory
standpoint, cybersecurity in space has been increasingly dis-
cussed recently [51], [25] after not being a major concern for
a long time [14]. Although attacks on in-orbit systems such
as satellites have a long history [47], many communication
systems still have no access control measures in place [51].
They rely on the flawed principle of security-by-obscurity, as
operators put their trust in the high barrier to entry to even
establish communication with a system in space. Inexpensive
off-the-shelf components and open satellite and antenna de-
signs have drastically lowered this barrier in recent years. This
increasingly allows attackers to access in-orbit systems, further
broadening the attack surface when they can send (malformed)
packets that get parsed or even directly issue telecommands. A
recent survey on satellite security found that, while hardware-
software system integration testing and unit-testing are quite
common in ensuring the correctness of space-grade systems,
most satellite development does not include dedicated security
testing [51]. The authors of the survey uncovered memory
corruption-based vulnerabilities in critical components such as
the Command and Data Handling System (CDHS) firmware.
Memory corruptions will often lead to crashing or otherwise
ill-behaving systems and hence are large safety issues. At the
same time, common system-level security mitigations such
as non-executable stacks or Address Space Layout Random-
ization (ASLR) are mostly absent in embedded systems and
Real-Time Operating Systems. The lack of basic security
mitigations turns many bugs into exploitable vulnerabilities.

More recently, fuzzing has been increasingly applied to
space systems. Fuzzing is an automated software testing
approach in which a system under test is repeatedly presented
with automatically generated inputs [19]. Presenting a program
that expects structured input with unexpected formats or
random data aims to find unhandled edge cases resulting in
bugs. Analyzing such findings and fixing their root causes
can help to reduce bugs and lead to improved software
quality. The technique has been successfully applied to find
security vulnerabilities in a multitude of different systems [43],
[6] and increasing its applicability and efficacy are ongoing
research efforts [52], [44]. As part of a security analysis of
COSPAS-SARSAT, a satellite-aided search-and-rescue initia-
tive, Costin et al. fuzzed EPIRB protocol implementations [7].
Scharnowski et al. perform a case study of fuzzing embedded
space systems and identify bugs in the firmware of three
satellites [42]. As systems in space are inherently physically

2

inaccessible, resetting the systems often is non-trivial. In the
worst case, security issues like Remote Code Execution can
result in an unauthorized takeover and permanent loss of
control over a space vehicle [51].

C. Safety-Critical Systems

Designing safety-critical systems is especially important in
sectors such as aviation, automotive and industrial control sys-
tems, where failure of a system will result in serious damage
to expensive equipment or even persons. Safety-critical system
requirements aim to improve reliability. Typical measures for
this are added redundancy in a fault-tolerant system or fail-
passive designs. For the scope of this work, we also treat
mission-critical and security-critical considerations as parts
of ”safety-critical”. While faulty software, e.g., in unmanned
space flight, might not directly endanger human lives, it can
still lead to unintended behavior, resulting in failure to achieve
certain mission goals, damaging expensive hardware, loss of
sensitive proprietary data or even loss of access to remotely
controlled systems. Developing not only safe but also secure
systems is important to avoid such unforeseen consequences.

Different standardizations exist to assess the safety require-
ments of a system in a given context and to consequently pro-
vide guidelines for safety-aware and risk-minimizing imple-
mentation. In the following, we will give a concise overview
of relevant industrial certifications for safety-critical systems.
The most common standard for software in aerospace sys-
tems is the RTCA DO-178C, the Software Considerations
in Airborne Systems and Equipment Certification [39]. It
provides guidelines for the development of aviation software,
ensuring safety and reliability in compliance with regulatory
requirements. The ISO 26262 standard for ”Road vehicles -
Functional safety” defines multiple Automotive Safety Integrity
Levels (ASIL) for electronic systems in serial production
vehicles [24]. An initial risk assessment establishes the ASIL
for a given product, from A to D with D being the highest.
The levels define the safety requirements necessary to be
qualified under ISO 26262. Having increasingly high integrity
requirements, they aim to avoid unreasonable residual risks
in functional safety. The IEC 61508 standard covers func-
tional safety for safety-related electronic systems in industrial
environments [23]. Each safety function is assigned a target
Safety Integrity Level (SIL) with 4 being the highest. The
SIL is quantified by the minimum safe-failure fraction and
the maximum probability of dangerous failure. For every new
environment, an individual definition of what dangerous means
is required, usually in the form of requirement constraints.
Ultimately, the standard includes methods on how to design
and maintain automatic safety-related systems. It is applicable
in all industries.

All of these standards usually deal with safety lifecy-
cles, including development, production and operation. Usu-
ally, safety-critical software engineering is comprised of
standardization-guided coding and system analysis, manual
inspections, documentation, software testing and verifica-
tion [30]. These steps can include the usage of methods and

components specifically certified for certain domains, e.g.,
formally verified compilers.

III. DEVELOPING SAFE SPACE SYSTEMS IN RUST

The majority of software needed to operate a spacecraft re-
lies on the C programming language, especially in (embedded)
systems development. Consequently, software engineers’ ex-
pertise in the field historically is mostly focused on this legacy
ecosystem and C as a language. This leads to further reluctance
to adopt a new and relatively young programming language in
a very change-averse space. With the additional high degree
of requirements to meet in the highly regulated area of space
systems [34], industry adoption of Rust is still in its infancy.
In open-source space software, Rust is already being used:
In KubOS [53], a software stack for satellites, component
functionality is largely implemented in Rust. FreeRTOS, a
real-time Operating System (RTOS) prominently used in in-
orbit systems [38], offers mature Rust bindings. Although
such efforts demonstrate the space community’s willingness
to adopt a safer alternative to the ubiquitous C, real-world
(industry) usage is still limited due to safety concerns and
the need for legacy interoperability. At the same time, Rust’s
focus on safety has been shown to lead to fewer security- and
safety-relevant bugs in large-scale real-world systems [48]. As
Rust not only offers language features enabling safe systems
programming [27] but also high interoperability with existing
C code, we see Rust as a promising candidate to replace C in
the future engineering of safety-critical embedded systems.

A. The Embedded Rust Ecosystem

A programming language’s ability to manage system re-
sources and interface with hardware and real-time systems
is an important aspect when considering its applicability in
safety-critical system programming. Spacecraft such as satel-
lites usually integrate multiple embedded systems for their
various tasks [51]. One important aspect of embedded system
development is the support of the diverse hardware compo-
nents to be found on microcontrollers. Whether a programming
language is suitable for a given task also might depend on
whether there are drivers or other hardware interfaces available
to achieve a given task. Commonly, hardware abstractions
are used to write device-independent drivers for embedded
systems. A driver can be any piece of code interacting with
external peripherals, such as sensors, antennas or actuators.
By developing the driver on top of a Hardware Abstraction
Layer (HAL), it is agnostic of the underlying platform and
can be used without modifications on a range of embedded
devices, e.g., AVR or ARM Cortex-M microcontrollers. For
Rust, the popular embedded-hal package (crate) offers
this foundation and acts as an integral part of the embed-
ded Rust ecosystem [11]. There are currently nearly 200
drivers built on top of this HAL, ranging from support for
humidity sensors over gyroscopes and radio transceivers to
embedded-graphics-compatible LCD drivers [36]. By building
upon a common HAL, these drivers currently support 48

3

2018 2019 2020 2021 2022 2023 2024
Year

0

200

400

600

800

1000

1200

1400

1600
Co

un
t

0

10

20

30

40

50
Stars
Accumulated Commits
Monthly Commits

Fig. 1. Popularity of the embedded-hal Rust crate. The GitHub repository
shows steady growth in popularity, measured in GitHub Stars, while the
amount of monthly contributions also increases year-over-year.

different microcontrollers that have embedded-hal imple-
mentations. There are also whole firmware projects realized
with embedded-hal as a base: Stabilizer is a firmware for a
Digital Signal Processor for quantum physics experimentation,
including telemetry via MQTT [37]. The realization of such
complex projects in Rust is a strong signal for embedded
Rust’s efficacy and maturity. Development of this unified
Rust HAL started in 2017 and contributions and popularity
are steadily growing (cf. Figure 1), showing the embedded
community’s interest in Rust. The crate was recently released
in version 1.01, stabilizing all traits and committing to not
introducing breaking changes in the future. Other projects
of the Rust on Embedded Devices Working Group include
the heapless crate [12]. The crate offers implementations
of common data structures such as vectors or double-ended
queues not depending on a dynamic allocator, thus being
especially suited for embedded development.

Systems with ARM Cortex-M CPUs, such as STM32 micro-
controllers, are a common component of space systems such
as CubeSats [42]. The Rust ecosystem for Cortex-M-based
systems is especially mature. A collection of Cortex-M crates
offers support for peripheral access, interrupt handling and
startup sequences [10]. They provide safe and idiomatic Rust
interfaces to potentially unsafe functionality where possible.
There are also recent developments explicitly aimed at further
enhancing the security and safety of embedded systems. The
flip-link tool for Cortex-M systems addresses the issue that
in certain bare metal environments even code without any
unsafe blocks may not be memory-safe if a stack overflow,
i.e., undefined behavior, is present [15]. A downwards-growing
stack might collide with the bss / data memory region,
overwriting static variables and resulting in undefined behav-
ior. The tool flips the memory layout and positions the stack
below the static memory regions. If the stack now overflows, a
catchable hardware exception will be thrown when attempting
to read beyond the physical RAM boundaries.

1https://blog.rust-embedded.org/embedded-hal-v1/

B. Safety-Critical Software Engineering

In 2022, researchers of the United Kingdom Defence Science
and Technology Laboratory proposed evaluation criteria based
on RTCA DO-178C to review how well-suited a programming
language is for usage in safety-critical contexts in the air
domain [3]. For Rust, they concluded that, while some aspects
of the language require special attention, there are no major
barriers to its use in safety-critical software in aviation.

a) Programming Guidelines: While fully formally ver-
ifying a whole ecosystem is infeasible, for the usage in
safety-critical contexts certain practices can be mandated.
Standards such as DO-178C do not provide a coding standard
in themselves but require that one must be used [39]. One
of the most popular and up-to-date standards for this use
case is MISRA-C [31]. MISRA-C provides guidelines for the
development of safe, secure and reliable embedded systems.
The guideline also acknowledges that software is neither
safe nor reliable if it exposes security vulnerabilities, even
if the system is functionally correct otherwise. Originally
intended for use in the automotive industry, the standard is
nowadays widely used in safety-critical systems and is also
the foundation of the NASA Jet Propulsion Laboratory C
Coding Standards. In 2022, the High Assurance Rust initiative
introduced a programming guide loosely based on MISRA-
C [4]. The High Assurance Rust Book provides an introduction
to systems programming and low-level software security with
an emphasis on code safety and functionality. It provides a
taxonomy of MISRA rules, showing that a significant share of
rules is automatically enforced by the Rust compiler. Topics
of the book include data structures for resource-constrained
embedded environments and static program verification. The
practical examples introduce a safe subset of Rust based on
MISRA-C directives. Furthermore, the book discusses tech-
niques such as differential fuzzing and deductive verification to
verify properties Rust’s compiler cannot automatically prove.

b) Standardization and Qualification: The reliability and
determinism of a language’s compiler are paramount when de-
veloping software for system-critical systems. Ferrous Systems
recently qualified their open-source Rust compiler ferrocene
under ISO 26262 (ASIL D) and IEC 61508 (SIL 4) [17].
This effort presents the first qualification of Rust for usage
in safety-critical systems. Currently aimed at the automotive
and industrial sectors, a future qualification for aerospace
systems under DO-178 is planned. The qualification of the
compiler effectively means that it was tested to produce safe
results, i.e., given source code implementing a functionality,
the target binary is achieving that functionality. To this end, a
diverse set of configurations was tested, e.g., the compiler in
a certain version, on ARMv7-M, in a FreeRTOS setting with
specific compiler flags. Libraries such as core require further
qualification to assert that they implement their specification.
Although this presents an apparent gap in safety qualification,
it is interesting to note that mature languages such as C
and C++, although having qualified language specifications,
also do not have qualified standard libraries. Ferrous System’s

4

qualification efforts also produced the first full language spec-
ification for Rust [16].

AdaCore recently introduced GNAT (GNU NYU Ada
Translator) Pro for Rust [1]. GNAT is a compiler for the Ada
programming language based on GCC infrastructure. Ada is
extensively being used in real-time and embedded systems in,
e.g., aerospace, and defense industries, aiming for enhanced
safety and reliability. The support for Rust allows the integra-
tion of Rust code into existing C, Ada and SPARK projects,
introducing bi-directional Ada-Rust bindings. This integration
into the AdaCore ecosystem would also allow for the use of
its other features, such as formal verification methods with
SPARK, e.g., for communication protocols [2]. GNAT Pro for
Rust provides versions of rustc (compiler), cargo (package
manager and rustc wrapper) and gdb (debugger) with long-
term support. Yearly updates include testing and qualification
of changes coming from upstream Rust, providing a more
stable development environment. AdaCore also stated that they
intend to get language library subsets of core certified, e.g.,
under DO-178.

IV. MAKING SOFTWARE FOR SPACE SYSTEMS SAFER

In the following, we will investigate how to increase the
overall safety of existing systems by rewriting especially
safety-critical parts in Rust. To this end, we conduct a case
study on the Cubesat Space Protocol (CSP), a network protocol
for standardized communication in a distributed embedded
system such as in CubeSats [9]. With over 40 contributors,
2000 commits and 400 stars, it is the most popular open-
source library for satellites on GitHub. Features of the protocol
include a thread-safe socket API, a modular network interface
system, a small memory footprint and integrations for Linux
as well as for popular embedded OSs FreeRTOS and Zephyr.
CSP is being used in orbit: the SUCHAI nanosatellite flight
software [21] uses libCSP for communication between sub-
systems and with the ground station [45], the European Space
Agency (ESA) uses FreeRTOS and libCSP in their 2019 OPS-
SAT CubeSat and the German Space Operations Center used
the CSP for its CubeL CubeSat in 2020 [22].

A. Security Analysis

To gain a deeper understanding of the protocol, we conduct
a partial security analysis of its C implementation [8]. Inves-
tigating the commit history and past bug fixes of the project
showed that the interface implementations inhabit the highest
count of high-impact vulnerabilities such as buffer overflows.
This can be explained by the library’s zero-copy buffer- and
queueing system. Once a raw packet arrives at an interface
and is placed in a queue for further processing, no more raw
memory operations are performed on it. This reduces the over-
all attack surface on higher layers significantly. Consequently,
we deem the interface backend implementations especially
interesting for further analysis and for re-implementation in
Rust.

We set up fuzzing for libCSP with LibAFL [19], a highly
customizable fuzzing library implemented in Rust. To fuzz

the CAN interface backend, we write a custom harness that
allows us to put fuzzer-generated pseudo packets into the
queue and test if certain parts of the library crash. We
identify three previously undiscovered security issues: First,
an off-by-one error allows processed CAN frames to trigger
a buffer overflow despite the presence of a guard condition.
Second, an unchecked size field in raw incoming CAN frames
enables maliciously crafted frames to trigger another buffer
overflow. Third, the missing check of a return value of a
malloc call in the USART interface, potentially leading to
a NULL pointer dereference. All findings were disclosed to
and acknowledged by the maintainers. Jointly, we developed
patches and improved the overall code safety of the library 2.

Partially rewriting a low-level component such as the CAN
interface in Rust does not magically make all security consid-
erations obsolete. The low-level interfaces, e.g., for the CAN
bus or ethernet, make use of drivers to retrieve raw data.
This raw data subsequently is assembled into CSP packets
and placed in a queue, actions that require raw memory
access. Thus, the usage of unsafe in Rust would be hardly
avoidable. But we agree that, as has been argued before [48],
the use of unsafe blocks can lead to increased caution while
implementing such code sections, potentially leading to fewer
programming mistakes. At the same time, multiple bug classes
we encountered during the analysis of the library’s history
would have been trivially avoided in safe Rust. These include
double frees and potential NULL pointer dereferences due
to missing checks on the return values of manual memory
allocations.

B. Partially Rewriting C Applications

Interoperability between Rust and C is in a very mature
state. Tooling such as cbindgen [32] and bindgen [41] can
automatically generate bindings from Rust to C and vice-
versa. Using functionality from existing C libraries in new
Rust projects or integrating Rust libraries in C projects are
common use cases and guides explaining the process can be
found plenty. Many popular libraries such as openssl [40]
use bindgen to expose C functionality to Rust programs.
Yet, resources describing the replacement of existing C code
with a Rust implementation and linking both back together,
involving bidirectional library dependencies, are missing. We
aim to fill this gap and conduct a case study on libCSP.
Reimplementing entire C code bases in Rust quickly becomes
infeasibly time-consuming with project size, so we aim to only
rewrite chosen components. Gradually reimplementing parts
of a project in Rust is often more realistic and can hence net
short-term security benefits. More critical subsystems can be
rewritten before less important ones, with the entire library
still functioning as before.

To this end, we perform the following steps: As a target,
we choose the csp_can2_rx function of libCSP’s CAN
interface. We first remove the code in question from the C
source code of libCSP, then we mark the function as extern

2https://github.com/libcsp/libcsp/pull/510

5

to tell the compiler that the function will be available, just
not in the C source. We implement the functionality as a
Rust library. As the function makes calls to other libCSP
functions, we use bindgen to generate Foreign Function Inter-
face (FFI) bindings. These bindings include public constants
such as CSP_BUFFER_SIZE, struct definitions and external
C function bindings. For the most important structs and error
types, we add manual definitions and enums, overall aiming to
write more idiomatic Rust. Because the Rust compiler cannot
assure the usual safety guarantees across the FFI boundary,
every call to a C function from Rust must be marked unsafe.
We build the library as no_std and panic = "abort"
to eliminate outside dependencies and make the integration
as minimal as possible. Our build.rs file contains linker
arguments to specify the location of the original C library.
We first compile our static Rust library, linking against the
original C headers. Subsequently, we write a simple C header
file defining the interface of the replaced function, which is
of course identical to the original one but now an external
function. The process is illustrated in Fig. 2. Finally, we
compile libCSP with csp_can2_rx marked as extern and
linking against our Rust library with the new header file. The
result is a .so file that includes all functionality from the
original libCSP with some functions being written in Rust. To
conclude our case study, we compile a test application from
the libCSP repository with our library. Running it confirms
that the original functionality is maintained.

One limitation of only partially replacing an implementation
with Rust is the need to maintain interoperability. This usually
means passing raw pointers between FFI functions and using
primitive types from Rust’s libc crate. While this does not im-
pose limitations on the applicability per se, it potentially limits
the use of more idiomatic, and thus, safer, Rust. Performance-
wise, this does not introduce any inherent overhead as FFI
calls in C and Rust are just normal function calls after linking.
At the same time, translating data structures between rather
primitive C representations and more verbose Rust ones with
complex types could lead to a slight performance impact while
allowing for the usage of more idiomatic and expressive Rust
patterns. Overall, our case study demonstrates the feasibility of
the approach and we are confident that the introduced process
can contribute to faster adoption of Rust in existing code bases,
ultimately leading to safer software.

V. A NEW TARGET PLATFORM FOR RUST

As our final case study, we showcase how to compile Rust
code for a previously unsupported bare metal platform. This
enables embedded Rust development for additional platforms
commonly encountered in space systems.

A. Cross-Compilation in Rust

The rustc compiler offers accessible cross-compilation [29].
Various target platforms can be specified via a tar-
get triple consisting of the architecture, the vendor, the
OS type and optionally an environment. For instance,

// point at Rust implementation for `csp_can2_rx`

#include "libcsp_rs.h"

extern int csp_can2_rx(csp_iface_t * iface, uint32_t id, const uint8_t * data, uint8_t dlc, int *

task_woken);

// remove local C implementation

// int csp_can2_rx(csp_iface_t * iface, uint32_t id, const uint8_t * data, uint8_t dlc, int * task_woken) {

..

csp_if_can.c

lib.rs
(static lib)

#[no_mangle]

pub extern "C" fn csp_can2_rx(

 iface: *mut libcsp_ffi::csp_iface_t,

 id: u32,

 data: *const u8,

 data_length: u8,

 task_woken: *mut i32,

) -> CspError

..

rustc-link-lib=libcsp
libcsp_ffi.rs

libcsp_rs.h

compile

libcsp.so

Fig. 2. Partial Rewriting and Linking Process. We substitute a single function
of libCSP’s C implementation with a Rust version and compile it into a single
library without the changes being visible to end-users..

thumbv7m-none-eabi specifies the bare metal ARMv7-
M architecture as the target, as found on ARM Cortex-Ms.
For code generation, rustc relies on LLVM. Rust specifies
three tiers of platform support for compile targets. Tier 1
is full support, coming with official binaries and automated
testing after all changes introduced to the language. Example
platforms for tier 1 support are 64-bit macOS or ARM64
Linux. Tier 3 targets can be built with Rust but do not come
with any official builds or testing from the Rust project.

B. A Bare Metal 32-bit PowerPC Target

The Power Instruction Set Architecture (ISA) features a
reduced instruction set computer (RISC) instruction set. The
architecture is of special importance in the space domain
as multiple popular radiation-resistant onboard systems and
cores are developed on top of it. The RAD750 single-board
computer was released in 2001 [5] and is used in the 2011
Mars Curiosity Rover and the 2021 James Webb Space Tele-
scope. It is based on the PowerPC 750 core and operates in
environments with up to 100,000 rads. With P2020 Space,
Teledyne develops a modern radiation-tolerant processor based
on PowerPC e500v2 CPUs [49]. While Rust supports multiple
Linux and BSD flavors for PowerPC, there is no support for
bare metal PowerPC yet. To fill this gap, we develop a rustc
target configuration [13].

The configuration specifies options for the Rust compiler to
be aware of. These settings include the LLVM-internal target
triple, the size of the biggest atomic type of the platform, the
target’s endianness and pointer width. For compilation and
linking, we rely on pre-built musl toolchains from bootlin 3

and specify the linker in .cargo/config. After finaliz-
ing the target configuration file, we can use cargo to com-

3https://toolchains.bootlin.com/releases powerpc-e500mc.html

6

pile our program for bare metal PowerPC: cargo build
--target=ppc32-unknown-none.json
To evaluate our target configuration, we develop a sim-
ple testing application. The bare metal binary is con-
figured with no_std and no_main. After starting, it
uses Rust’s core::fmt::Write and C’s extern "C"
fn putchar(ch: i32) to print out a simple ”Hello
World from Rust!” in a loop. Finally, we execute the
resulting bare metal binary in QEMU, emulating an
e500mc CPU: qemu-system-ppc64 -nographic -M
ppce500 -cpu e500mc ./ppc_test

VI. RECOMMENDATIONS

We condense the insights from our contributions into a set of
recommendations for practitioners designing and developing
safety-critical embedded space systems.

R01. Gradually incorporate Rust: Using a memory-safe
language such as Rust for (embedded) systems programming
can prevent multiple bug classes. While rewriting a whole code
base in a new language in most cases is an inappropriately
large effort, writing new components in one should be the
go-to way. This approach is further facilitated by the mature
options to interface between Rust and C components. For
especially critical components, it should be evaluated whether
a partial Rust rewrite could be beneficial. Programming guide-
lines such as High Assurance Rust, although incomplete as of
writing, and The Embedded Rust Book can further help in
transitioning a development team and project to Rust.

R02. Use qualified toolchains: A compiler qualified for
safety-critical domains facilitates the acceptance of Rust as a C
replacement in projects required to adhere to certain standards.
Qualification of standard libraries such as core will be even
more impactful, paving the way to fully qualified Rust pro-
grams. The commercial solutions we mentioned also provide
a more stable foundation in the context of relatively fast-
changing Rust versions and features and even offer support
packages.

R03. Utilize the existing embedded Rust ecosystem:
The embedded Rust community is very active and produces
high-quality components such as the embedded-hal and
heapless crates. Using existing solutions where possible
accelerates development by granting access to a diverse set
of device drivers without the necessity to implement all low-
level interfaces and protocols again. Furthermore, existing im-
plementations can act as examples for Rust-idiomatic system
programming.

R04. Employ dedicated security testing: Security and
safety considerations go hand in hand. Security-focused testing
can uncover issues beyond the scope of traditional unit- and
integration testing. Dynamic approaches such as fuzzing and
formal verification through symbolic execution can help to
verify properties that static analysis and the Rust compiler
cannot automatically assert.

VII. RELATED WORK

Two ongoing ESA activities investigate topics closely re-
lated to this work [33], [20]. They examine Rust’s applicability

in space applications, including functional safety aspects and
how to streamline the development of Rust in the presence of
an existing C code base.

Ashmore et al. derived a set of evaluation criteria for
software development in the air domain based on a software
standard for aerospace systems [3]. They formally evaluate
Rust based on these criteria as a case study. Their work
focuses on the details of the programming language itself
and not the ecosystem or practitioner-focused considerations.
They answer questions such as ”How does the language
prevent the introduction, or support the detection, of errors?”
by reviewing language features such as the Rust compiler’s
ownership model.

For our PowerPC Rust target case study, we draw inspiration
from an experiment Ferrous Systems conducted in which they
brought Rust support to bare metal SPARC v8 CPUs [18].

Willbold et al. performed a comprehensive analysis of the
attack surface of satellite systems [51]. The authors provide a
taxonomy for threats against embedded space systems and for
the first time identify vulnerabilities in satellite firmware that
allow remote takeover.

VIII. CONCLUSION

Our work demonstrates significant progress in integrating
Rust into safety-critical space systems, addressing the urgent
need for enhanced security and robustness in aerospace soft-
ware development. We conduct an in-depth assessment of
Rust’s readiness for safety-critical applications, acting as a
starting point for practitioners. We fill the gap between C-
for-Rust and Rust-for-C by introducing a practical methodol-
ogy for gradually rewriting components in existing C-based
systems in Rust. The development of a new Rust compiler
target for bare metal PowerPC CPUs further contributes to
the applicability of Rust in an aerospace context. Finally, the
discovery and rectification of vulnerabilities in the Cubesat
Space Protocol contribute to a safer status quo in open-source
space software.

We hope that these efforts collectively help pave the way for
a broader adoption of Rust in space systems, leading to a more
secure, reliable, and safe aerospace software infrastructure.

A. Availability

Our contributions will be available on Github: https:
//github.com/pr0me/rust-for-critical-space-systems. We open-
source our setup to fuzz libCSP with LibAFL, the partial Rust
rewrite of libCSP and build instructions to link this partial
rewrite back into the original C library as well as the rustc
target configuration for bare metal PowerPC.

REFERENCES

[1] AdaCore, “Gnat pro for rust: Release announcement,” https://www.
adacore.com/gnatpro-rust, 2023.

[2] ——, “RecordFlux: Development of provable, secure
communication protocols,” https://www.adacore.com/press/
adacore-launches-recordflux-technology, 2023.

[3] R. Ashmore, A. Howe, R. Chilton, and S. Faily, “Programming language
evaluation criteria for safety-critical software in the air domain,” in
Proceedings of the IEEE International symposium on software reliability
engineering workshops (ISSREW), August 2022.

7

https://github.com/pr0me/rust-for-critical-space-systems
https://github.com/pr0me/rust-for-critical-space-systems
https://www.adacore.com/gnatpro-rust
https://www.adacore.com/gnatpro-rust
https://www.adacore.com/press/adacore-launches-recordflux-technology
https://www.adacore.com/press/adacore-launches-recordflux-technology

[4] T. Ballo, M. Ballo, and A. James, “High assurance rust: Developing
secure and robust software,” https://highassurance.rs, 2022.

[5] L. Burchin, “Rad750 experience: The challenge of see hardening a high
performance commercial processor,” in Microelectronics Reliability and
Qualification Workshop (MRQW 2002). Manhattan Beach, CA: BAE
Systems, 2002.

[6] Z. Chen, S. L. Thomas, and F. D. Garcia, “Metaemu: An architecture
agnostic rehosting framework for automotive firmware,” in ACM Con-
ference on Computer and Communications Security (CCS), 2022.

[7] A. Costin, H. Turtiainen, S. Khandkher, and T. Hämäläinen, “Cyber-
security of COSPAS-SARSAT and EPIRB: threat and attacker models,
exploits, future research,” in Workshop on Security of Space and Satellite
Systems (SpaceSec). The Internet Society, February 2023.

[8] CSP Contributers, “The Cubesat Space Protocol library: C implementa-
tion,” https://github.com/libcsp/libcsp, 2011, accessed: 2024-01-18.

[9] ——, “The Cubesat Space Protocol documentation,” https://libcsp.
github.io/libcsp/, 2023, accessed: 2024-01-18.

[10] Embedded Rust Working Group, “Cortex-M Rust Crates,” https://github.
com/rust-embedded/cortex-m, 2016, accessed: 2024-01-18.

[11] ——, “embedded-hal: A hardware abstraction layer for embedded sys-
tems,” https://github.com/rust-embedded/embedded-hal, 2017, accessed:
2024-01-18.

[12] ——, “heapless: static-friendly data structures,” https://github.com/
rust-embedded/heapless/, 2017, accessed: 2024-01-18.

[13] ——, “The Embedonomicon: Creating a custom target,” https://docs.
rust-embedded.org/embedonomicon/custom-target.html, 2023.

[14] G. Falco, “The vacuum of space cyber security,” in AIAA SPACE and
Astronautics Forum and Exposition. American Institute of Aeronautics
and Astronautics, 2018.

[15] Ferrous Systems, “flip-link: embedded zero-cost stack overflow protec-
tion,” https://github.com/knurling-rs/flip-link, 2020, accessed: 2024-01-
18.

[16] ——, “Ferrocene Language Specification for Rust,” https://github.com/
ferrocene/specification, 2023.

[17] ——, “Ferrocene: Open source qualified rust compiler toolchain,” https:
//ferrous-systems.com/ferrocene/, 2023.

[18] ——, “Rust for Mission Critical Applications,” https://ferrous-systems.
com/blog/rust-for-mission-critical-applications/, 2023.

[19] A. Fioraldi, D. Maier, D. Zhang, and D. Balzarotti, “LibAFL: A
Framework to Build Modular and Reusable Fuzzers,” in Proceedings
of the 29th ACM conference on Computer and communications secu-
rity (CCS), ser. ACM Conference on Computer and Communications
Security (CCS). ACM, November 2022.

[20] German Aerospace Center (DLR), “ESA activity: Crustacea in space
- co-operative rust and c embedded applications in space - theory and
practice,” https://activities.esa.int/4000140242, 2023, accessed: 2024-01-
18.

[21] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, “An architecture-
tracking approach to evaluate a modular and extensible flight software
for cubesat nanosatellites,” IEEE Access, vol. 7, pp. 126 409–126 429,
2019.

[22] L. Grillmayer and S. Arnold, “Integrating the cubesat space protocol into
gsoc’s multi-mission environment,” in Proceedings of the AIAA/USU
Conference on Small Satellites, August 2020.

[23] International Electrotechnical Commission (IEC), “Functional safety
of electrical/electronic/programmable electronic safety-related systems,”
IEC, Qualification Standard IEC 61508, 2010. [Online]. Available:
https://webstore.iec.ch/publication/5515

[24] International Organization for Standardization (ISO), “Road vehicles
- functional safety,” ISO, Qualification Standard ISO 26262, 2018.
[Online]. Available: https://www.iso.org/standard/68383.html

[25] B. Jacobs, “A comparative study of EU and US regulatory approaches
to cybersecurity in space,” Air and Space Law, vol. 48, no. 4,
pp. 477–492, 2023. [Online]. Available: https://kluwerlawonline.com/
journalarticle/Air+and+Space+Law/48.4/AILA2023052

[26] C. Johnson, “CyberSafety: Cybersecurity and safety-critical software
engineering,” in Achieving Systems Safety, C. Dale and T. Anderson,
Eds. London: Springer London, 2012, pp. 85–95.

[27] R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer, “Safe systems
programming in rust,” Commun. ACM, vol. 64, no. 4, p. 144–152,
March 2021. [Online]. Available: https://doi.org/10.1145/3418295

[28] S. Klabnik and C. Nichols, “The Rust Programming Language: Unsafe
rust,” https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html, accessed:
2024-01-18.

[29] ——, The Rust Programming Language. USA: No Starch Press, 2018.
[30] P. A. Laplante and J. F. DeFranco, “Software engineering of safety-

critical systems: Themes from practitioners,” IEEE Transactions on
Reliability, vol. 66, no. 3, pp. 825–836, 2017.

[31] Motor Industry Software Reliability Association (MISRA), MISRA
C:2012 Guidelines for the use of the C language in critical systems.
United Kingdom: MIRA, 2012.

[32] Mozilla, “cbindgen: generate c headers for rust libraries with public c
api,” https://github.com/mozilla/cbindgen, 2019, accessed: 2024-01-18.

[33] N7 Space, “ESA activity: Evaluation of rust usage in space applications
by developing bsp and rtos targeting samv71,” https://activities.esa.int/
4000140241, 2023, accessed: 2024-01-18.

[34] Nelson, Stacey, “Certification processes for safety-critical and mission-
critical aerospace software,” NASA, Tech. Rep., 2003. [Online].
Available: https://ntrs.nasa.gov/citations/20030065988

[35] J. M. Perkel, “Why scientists are turning to rust,” Nature, vol. 588, no.
7836, pp. 185–186, 2020.

[36] QUARTIQ, “List of device drivers based on embedded-hal,” https:
//github.com/rust-embedded/awesome-embedded-rust#driver-crates,
2019, accessed: 2024-01-18.

[37] ——, “The Stabilizer DSP Firmware,” https://github.com/quartiq/
stabilizer, 2019, accessed: 2024-01-18.

[38] B. Rajulu, S. Dasiga, and N. R. Iyer, “Open source rtos implementation
for on-board computer (obc) in studsat-2,” in IEEE Aerospace Confer-
ence, 2014, pp. 1–13.

[39] RTCA, “Software considerations in airborne systems and equipment
certification,” RTCA, Qualification Standard DO-178C, Dec. 2011.

[40] rust-openssl Contributers, “The openssl rust binding,” https://github.com/
sfackler/rust-openssl, 2015, accessed: 2024-01-22.

[41] Rust Project, “bindgen: generate rust ffi bindings to c,” https://github.
com/rust-lang/rust-bindgen, 2019, accessed: 2024-01-18.

[42] T. Scharnowski, F. Buchmann, S. Wörner, and T. Holz, “A case study
on fuzzing satellite firmware,” in 1st Workshop on Security of Space and
Satellite Systems, SpaceSec 2023, San Diego, California, USA, Feburary,
27, 2023. The Internet Society, 2023.

[43] S. Schumilo, C. Aschermann, A. Abbasi, S. Wör-ner, and T. Holz, “Nyx:
Greybox hypervisor fuzzing using fast snapshots and affine types,” in
Proceedings of the 30th USENIX Security Symposium (USENIX), August
2021, pp. 2597–2614.

[44] L. Seidel, D. Maier, and M. Muench, “Forming faster firmware fuzzers,”
in Proceedings of the 32th USENIX Security Symposium (USENIX),
2023.

[45] Space and Planetary Exploration Laboratory at University of Chile
and University of Santiago of Chile, “SUCHAI nanosatellite flight
software,” https://github.com/spel-uchile/SUCHAI-Flight-Software/tree/
master, 2023, accessed: 2024-01-18.

[46] Stack Overflow, “Annual developer journey ’23,” https://survey.
stackoverflow.co/2023/, 2023, accessed: 2024-01-18.

[47] J. A. Steinberger, “A survey of satellite communications system
vulnerabilities,” Ph.D. dissertation, 2008. [Online]. Available: https:
//scholar.afit.edu/etd/2729

[48] J. V. Stoep, “Google Security: Memory Safe Languages
in Android 13,” https://security.googleblog.com/2022/12/
memory-safe-languages-in-android-13.html, accessed: 2010-09-30.

[49] Teledyne e2v Semiconductor, “P2020 Space: Radiation tolerant
dual power architecture e500 core,” Product Specification P2020,
2019. [Online]. Available: https://semiconductors.teledyneimaging.com/
en/products/processors-and-processing-modules/p2020-space/

[50] United Nations Office for Outer Space Affairs (UNOOSA), “Online
index of objects launched into outer space,” https://www.unoosa.org/
oosa/osoindex/, 2022.

[51] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and
A. Abbasi, “Space odyssey: An experimental software security analysis
of satellites,” in IEEE Symposium on Security and Privacy (S&P), May
2023.

[52] C. S. Xia, M. Paltenghi, J. Le Tian, M. Pradel, and L. Zhang, “Fuzz4All:
Universal Fuzzing with Large Language Models,” in Proceedings of the
International Conference on Software Engineering (ICSE), 2024.

[53] Xplore, Inc., “KubOS: Open-source software stack for satellites,” https:
//github.com/kubos/kubos, 2023, accessed: 2024-01-18.

8

https://highassurance.rs
https://github.com/libcsp/libcsp
https://libcsp.github.io/libcsp/
https://libcsp.github.io/libcsp/
https://github.com/rust-embedded/cortex-m
https://github.com/rust-embedded/cortex-m
https://github.com/rust-embedded/embedded-hal
https://github.com/rust-embedded/heapless/
https://github.com/rust-embedded/heapless/
https://docs.rust-embedded.org/embedonomicon/custom-target.html
https://docs.rust-embedded.org/embedonomicon/custom-target.html
https://github.com/knurling-rs/flip-link
https://github.com/ferrocene/specification
https://github.com/ferrocene/specification
https://ferrous-systems.com/ferrocene/
https://ferrous-systems.com/ferrocene/
https://ferrous-systems.com/blog/rust-for-mission-critical-applications/
https://ferrous-systems.com/blog/rust-for-mission-critical-applications/
https://activities.esa.int/4000140242
https://webstore.iec.ch/publication/5515
https://www.iso.org/standard/68383.html
https://kluwerlawonline.com/journalarticle/Air+and+Space+Law/48.4/AILA2023052
https://kluwerlawonline.com/journalarticle/Air+and+Space+Law/48.4/AILA2023052
https://doi.org/10.1145/3418295
https://doc.rust-lang.org/book/ch19-01-unsafe-rust.html
https://github.com/mozilla/cbindgen
https://activities.esa.int/4000140241
https://activities.esa.int/4000140241
https://ntrs.nasa.gov/citations/20030065988
https://github.com/rust-embedded/awesome-embedded-rust#driver-crates
https://github.com/rust-embedded/awesome-embedded-rust#driver-crates
https://github.com/quartiq/stabilizer
https://github.com/quartiq/stabilizer
https://github.com/sfackler/rust-openssl
https://github.com/sfackler/rust-openssl
https://github.com/rust-lang/rust-bindgen
https://github.com/rust-lang/rust-bindgen
https://github.com/spel-uchile/SUCHAI-Flight-Software/tree/master
https://github.com/spel-uchile/SUCHAI-Flight-Software/tree/master
https://survey.stackoverflow.co/2023/
https://survey.stackoverflow.co/2023/
https://scholar.afit.edu/etd/2729
https://scholar.afit.edu/etd/2729
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://security.googleblog.com/2022/12/memory-safe-languages-in-android-13.html
https://semiconductors.teledyneimaging.com/en/products/processors-and-processing-modules/p2020-space/
https://semiconductors.teledyneimaging.com/en/products/processors-and-processing-modules/p2020-space/
https://www.unoosa.org/oosa/osoindex/
https://www.unoosa.org/oosa/osoindex/
https://github.com/kubos/kubos
https://github.com/kubos/kubos

	Introduction
	Background
	The Rust Programming Language
	Security Issues in Space
	Safety-Critical Systems

	Developing Safe Space Systems in Rust
	The Embedded Rust Ecosystem
	Safety-Critical Software Engineering

	Making Software for Space Systems Safer
	Security Analysis
	Partially Rewriting C Applications

	A New Target Platform for Rust
	Cross-Compilation in Rust
	A Bare Metal 32-bit PowerPC Target

	Recommendations
	Related Work
	Conclusion
	Availability

	References

